24,078 research outputs found

    On Consistency of Graph-based Semi-supervised Learning

    Full text link
    Graph-based semi-supervised learning is one of the most popular methods in machine learning. Some of its theoretical properties such as bounds for the generalization error and the convergence of the graph Laplacian regularizer have been studied in computer science and statistics literatures. However, a fundamental statistical property, the consistency of the estimator from this method has not been proved. In this article, we study the consistency problem under a non-parametric framework. We prove the consistency of graph-based learning in the case that the estimated scores are enforced to be equal to the observed responses for the labeled data. The sample sizes of both labeled and unlabeled data are allowed to grow in this result. When the estimated scores are not required to be equal to the observed responses, a tuning parameter is used to balance the loss function and the graph Laplacian regularizer. We give a counterexample demonstrating that the estimator for this case can be inconsistent. The theoretical findings are supported by numerical studies.Comment: This paper is accepted by 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS

    Understanding the Cancelation of Double Poles in the Pfaffian of CHY-formulism

    Full text link
    For a physical field theory, the tree-level amplitudes should possess only single poles. However, when computing amplitudes with Cachazo-He-Yuan (CHY) formulation, individual terms in the intermediate steps will contribute higher-order poles. In this paper, we investigate the cancelation of higher-order poles in CHY formula with Pfaffian as the building block. We develop a diagrammatic rule for expanding the reduced Pfaffian. Then by organizing diagrams in appropriate groups and applying the cross-ratio identities, we show that all potential contributions to higher-order poles in the reduced Pfaffian are canceled out, i.e., only single poles survive in Yang-Mills theory and gravity. Furthermore, we show the cancelations of higher-order poles in other field theories by introducing appropriate truncations, based on the single pole structure of Pfaffian.Comment: 30 pages,6 figures,1 table, footnote adde

    Note on symmetric BCJ numerator

    Full text link
    We present an algorithm that leads to BCJ numerators satisfying manifestly the three properties proposed by Broedel and Carrasco in [35]. We explicitly calculate the numerators at 4, 5 and 6-points and show that the relabeling property is generically satisfied.Comment: 14 pages, typo in eq.(4.1)is correcte

    Dual-color decompositions at one-loop level in Yang-Mills theory

    Get PDF
    In this work, we extend the construction of dual color decomposition in Yang-Mills theory to one-loop level, i.e., we show how to write one-loop integrands in Yang-Mills theory to the dual DDM-form and the dual trace-form. In dual forms, integrands are decomposed in terms of color-ordered one-loop integrands for color scalar theory with proper dual color coefficients.In dual DDM decomposition, The dual color coefficients can be obtained directly from BCJ-form by applying Jacobi-like identities for kinematic factors. In dual trace decomposition, the dual trace factors can be obtained by imposing one-loop KK relations, reflection relation and their relation with the kinematic factors in dual DDM-form.Comment: 26 pages,5 figure
    • …
    corecore